

Cockrell Creek TMDL for Shellfish Waters

Heathsville, VA

5 September 2007

What is a TMDL?

TMDL = Total Maximum Daily Load =
maximum amount of a pollutant that can
enter a waterbody without violating water
quality standards (WQS)

WQS = numeric or narrative limits on pollutants that ensure the protection of human health and of aquatic life

The TMDL Process in VA

• Three Step TMDL Process in VA

- TMDL Development (Find the source of the pollutant & determine the reduction needed)
- Implementation Plan Development (Identify conservation measures to fix the problem.
 Conservation measures are often called Best Management Practices or BMPs.)
- Implement the BMPs and sample to see improvement.

Why a TMDL for the Cockrell Creek Watershed?

- VDH Division of Shellfish Sanitation (DSS) monitors fecal coliform levels in shellfish waters
- Applicable water quality standard: 30-month geometric mean not exceeding 14 MPN/100 mL, and a 90th percentile not exceeding 49 MPN/100 mL
- Cockrell Creek has observed exceedances that necessitate
 TMDLs be developed to bring them into compliance

What are fecal coliform bacteria?

- Bacteria present in the intestines of warm blooded animals, like livestock, wildlife, birds, and humans
- Indicator of the potential presence of pathogens in water

Required Elements of a TMDL

- Developed for critical stream conditions;
- Must meet water quality standards;
- Consider seasonal variations;
- Include wasteload and load allocations;
 - waste load = permitted human discharges
 - load allocation = loads due to wildlife, cattle, pets
- Include a margin of safety;
- Consider impacts of background contributions;
- Be subjected to public participation;
- Have reasonable assurance for implementation.

What information might be used to develop a TMDL?

- VDH Sanitary Shoreline Survey
- VDH Bacteria monitoring
- Population estimates (human,pets,livestock)
- Affected waters volume
- Bacterial Source Tracking Data
- Land use, Climate, Tide and similar data
- DEQ permit data if applicable
- DEQ spill response and remediation data

An Example TMDL

Reducing existing bacteria load to the TMDL end point load is expected to restore water quality.

What's changed since last year?

New data

- DEQ Special Study conducted from Aug 2006 Feb. 2007
- Revised data analysis
- New studies and information incorporated into TMDL.

Table 3-1 Animal Populations and Septic Systems
Growing Area 12

Fecal Coliform	2
Sources	Cockrell Creek
Cattle	21*
Horse	6*
Pig	0
Deer	38
Duck	485
Geese	334
Raccoon	85
Dog	55
Estimated Septic	
Systems	90

^{* -} from DSS Shoreline survey 2004.

Estimated Human population = 392. (2000 U.S. Census)

Approx. 60% of urban area with public sewer. (Analyzed via GIS data from NNPDC.)

Water Quality Monitoring & Data

DEQ 2006-2007 Special Study Monitoring Stations

Cockrell Creek - Running Geometric Mean

Cockrell Creek - Running 90th Percentile

VDH Bacterial Data (Cockrell Creek) 1984-Present

VDH Bacteria Data (Cockrell Creek) 2002 - Present

DEQ Special Study - Fecal coliform Results

Monitoring Station	Station Description	3-Aug-06	20-Sept-06	27-Sept-06	22-Feb-07
7-COC000.86	VDH-DSS Site 12-6	25	<100 U	1000	<10 U
7-COC000.88	SE Corner Omega Pier with Ships	>2000 L	1600	<100 U	<10 U
7-COC000.89	South Side Omega Pier with Ships	520	1000	1000	<10 U
7-COC000.92	West Side Omega Pier with Ships	>2000 L	400	1000	<10 U
7-COC000.95	North Side Omega Pier with Ships	N/A	1700	200	<10 U
7-XAN000.17	VDH-DSS Site 12-5	<25 U	<100 U	4000	<10 U
VA0003867-002	Omega Outfall 002	280	>8000 L	5000	<10 U
VA0003867-995	Omega Outfall 995	>2000 L	10,000	1400	N/A
VA0003867-INT	Omega Water Intake	780	1800	500	<10 U

Fecal Coliform Units = # cfu/100 mL

Bold & Red Bacteria Values = WQ Violations using instantaneous primary contact standard 400 cfu/100mL (fecal coliform)

Bold Bacteria Values = WQ Violations using 90th Percentile shellfish standard - 49 MPN/100mL (fecal coliform)

Com Code L = Off Scale high, actual value greater than the value shown (>max detection limit)

Com Code U = Material analyzed for but not detected (<minimum detection limit)

NA = Not Available

DEQ Special Study – Enterococci Results

Monitoring Station	Station Description	3-Aug-06	20-Sept-06	27-Sept-06	22-Feb-07
7-COC000.86	VDH-DSS Site 12-6	75	110	210	<25 U
7-COC000.88	SE Corner Omega Pier with Ships	1800	3400	680	<25 U
7-COC000.89	South Side Omega Pier with Ships	680	600	240	<25 U
7-COC000.92	West Side Omega Pier with Ships	>2000 L	300	520	<25 U
7-COC000.95	North Side Omega Pier with Ships	N/A	800	1000	<25 U
7-XAN000.17	VDH-DSS Site 12-5	<25 U	<10 U	<10 U	<25 U
VA0003867-002	Omega Outfall 002	300	160	700	<25 U
VA0003867-995	Omega Outfall 995	>2000 L	4600	1400	N/A
VA0003867-INT	Omega Water Intake	>2000 L	>8000 L	>8000 L	<25 U
7-COC001.61	DEQ Ambient Station	N/A	N/A	N/A	25
7-COC000.27	DEQ Ambient Station	N/A	N/A	N/A	75

Enterococci Units = # cfu/100 mL

Bold & Red Bacteria Values = WQ Violations using instantaneous primary contact standard 104 cfu/100mL (Enterococci)

Com Code L = Off Scale high, actual value greater than the value shown (>max detection limit)

Com Code U = Material analyzed for but not detected (<minimum detection limit)

NA = Not Available

Use of BST in the TMDL

- Uses VDH-DSS routine monitoring data to calculate critical fecal count
- Uses 9 supplementary BST samples at selected stations to identify bacteria sources:
- Uses Antibiotic Resistance Analysis
 as BST method for source load allocation into 4 categories:
 - 1. Human
 - 2. Pets
 - 3. Livestock
 - 4. Wildlife

DEQ Special Study – BST Utilized.

 Significant Human Signature Detected in Omega Protein Intake & Discharges

Water Quality Data Summary

- DEQ station 7-COC001.61 shows long term improvement, attributable to upgrades at the Reedville STP in the 1990's
- VDH-DSS data shows seasonal exceedances of the Shellfish Water Quality Standard
- BST Data shows a significant human source from Omega Protein
- DMR data collected by Omega continues to show high bacterial counts from the treatment lagoon
- BST data from Omega lagoon includes human signature

Water Quality Data Summary

- Many bacterial samples from the Special Study not only exceed the Shellfish Standard, but also the Primary Contact (Swimming) Standard
- Omega DMR data also exceeds the Primary Contact (Swimming) Standard
 - Cockrell Creek will be listed as impaired for Primary Contact in 2008 VA Water Quality Assessment

Additional Information to Support Study

- 2002 Fluorometric Dye Trace Study conducted for Omega Protein
 - Showed Omega vessels influence facility intake
- 2004 VDH-DSS Shoreline Survey
 - All Marinas have Pump-out facilities for boats
 - DEQ station 7-COC001.61 does not show high bacterial values
- 2006-2007 DEQ Special Study
 - Significant human bacterial sources at Omega Intake & discharges
 - No violations of water quality standards during Omega off season

Conclusions

- Omega Protein, Inc. operational activities contribute significantly to the bacterial impairment in Cockrell Creek
- The Omega Fleet is the most probable source of bacteria
 - Ships have Type II Marine Sanitation Devices (MSDs) which discharge at 200 cfu/100mL (>14 times the shellfish standard)
- Omega Lagoon is a source of bacteria
 - DMR data, DEQ sampling, BST Human signature

Conclusions

- Additional non-point sources of bacteria are found within the watershed
- All 4 categories detected with in-stream BST samples

TMDL Calculation

Shellfish Designated Use Load Reductions

Table 5.1. Geometric Mean Analysis of Current Load and Estimated Load Reduction

Condemnation Area	Volume (m³)	Fecal Coliform (MPN/100ml)	WQ Standard MPN/100 ml	Current Load (MPN/day)	Allowable Load (MPN/day)	Required Reduction (%)
002A Cockrell Creek (VAP-C01E-08)	5102820	37.4	14	1.91E+12	7.14E+11	63%

Table 5.2. 90th Percentile Analysis of Current Load and Estimated Load Reduction

	Condemnation	Volume	Fecal Coliform	WQ Standard MPN/100	Current Load	Allowable Load	Required Reduction
A	Area	(m^3)	(MPN/100ml)	ml	(MPN/day)	(MPN/day)	(%)
	002A Cockrell Creek (VAP-C01E-08)	5102820	399.5	49	2.04E+13	2.50E+12	88%

Shellfish TMDL

Reduction and Load Allocation Based Upon 90th Percentile Standard: Cockrell Creek - Growing Area 12

Condemnation Area	Source	BST Allocation % of Total Load	Current Load MPN/ day	Load Allocation MPN/ day	Reduction Needed
Alca	Wildlife	12%	1.60E+12	1.60E+12	0%
002A	Human	42%	5.59E+12	0.00E+00	100%
Cockrell Creek	Livestock	38%	5.06E+12	0.00E+00	100%
(VAP-C01E-08)	Pets	8%	1.06E+12	8.90E+11	16%
	Total	100%	2.04E+13	2.50E+12	88%

Reduction and Waste Load Allocation Based Upon 90th Percentile Standard: Cockrell Creek - Growing Area 12

Condemnation Area	Discharger	Current Load MPN/ day	Load Allocation MPN/ day	Reduction Needed
002A				
Cockrell Creek	Omega Protein			
(VAP-C01E-08)	(VA0003867)	7.09E+12	9.97E+09	100%

Primary Contact Designated Use TMDL

Table 5.3 Calculations for Recreation Use Impairments in Cockrell Creek

Impaired Area	Volume (m ³)	Bacteria Pollutant	Current Load (cfu/day)	Allowable Load (cfu/day)	Required Reduction (%)
002A Cockrell Creek (VAP-C01E-08	5102820	Enterococci	4.08E+14	5.31E+12	99%

Highest observed ambient exceedence = >8000 cfu at Omega Protein, Inc.

TMDL Summary

Table 5.8. TMDL Summary for the Closure in the Cockrell Creek Watershed (90th percentile)

Condemnation Area	Pollutant Identified	TMDL MPN/day	Waste Load Allocation MPN/day	Load Allocation MPN/day	Margin of Safety
002A		A STATE OF THE STA			
Cockrell Creek	Fecal				
(VAP-C01E-08)	Coliform	2.50E+12	9.97 E+09	2.50E+12	Implicit

TMDL Summary for the Recreation Use Impairment in Cockrell Creek

Impaired Water body Segment	Volume (m ³)	Bacteria Pollutant	Load Allocation (cfu/day)	Wasteload Allocation (cfu/day)	TMDL	Margin of Safety
002A Cockrell Creek	5102820	Enterococci	5.29E+12	2.49E+10	5.31E+12	Implicit

Some Suggested Implementation Measures

- Establish No discharge Zone for vessels in Cockrell Creek or Great Wicomico River and tributaries
- More vigorous policing of pump out requirements
- Require higher level of septic treatment in home systems that need replacement and for new homes
- Establish a state cost share/grant program to aid home owners in replacing failing or inadequate systems
- Public education effort regarding animal and pet waste
- Public education effort regarding proper septic tank maintenance

Water Quality Fact

* "A single weekend boater flushing untreated sewage into our waters produces the same amount of bacterial pollution as 10,000 people whose sewage passes through a treatment plant."

California Department of Boating and Waterways

Water Quality Fact

* "A single overboard discharge of human waste can be detected in up to a one square mile area of shallow enclosed water. Contaminants known from human waste include hepatitis, streptococci, fecal coliform and other bacteria."

Florida Department of Environmental Protection

Current No Discharge Zones (NDZs) in VA

- Smith Mountain Lake
- VA Beach Area (Lynnhavan, Broad, & Linkhorn Bays)
- VA Beach Area Current efforts to establish additional NDZs for entire jurisdiction

 NDZs – possibly the most cost effective BMP to restore local water quality

Next steps

- 30 Day Public Comment Begins
- TMDL will be presented at SWCB meeting
- TMDL will be sent to EPA for approval

Send written comments to:

Mark Alling
4949-A Cox Rd
Glen Allen VA 23060
804/527-5021
msalling@deq.virginia.gov

Omega Protein WLA by Outfall

Table 5.4. Omega Protein, Inc. Fecal Coliform Wasteload Allocation

Omega	Daily Maximum	Highest recorded	Fecal Coliform	Fecal Coliform
Protein	Design Flow	fecal coliform	Existing load	Wasteload
Outfall	(MGD)	(cfu/100 mL)		Allocation
001	4.14	10,000*	1.57E+12	2.19E+09
002	0.481	>8000	1.46E+11	2.55E+08
995	14.2	10,000	5.37E+12	7.52E+09
	The VIII of the Vision	7.09E+12	9.97E+09	

^{*} Bacterial samples not collected at 001 during study. Since source water for 995 & 001 are same, values for 995 were assigned to 001.

Table 5.5. Omega Protein, Inc. Enterococci Wasteload Allocation

Omega	Daily Maximum	Highest recorded	Enterococci	Enterococci
Protein	Design Flow	Enterococci	Existing Loads	Wasteload
Outfall	(MGD)	(cfu/100 mL)		Allocation
001	4.14	4600*	7.21E+11	5.48E+09
002	0.481	700	1.27E+10	6.37E+08
995	14.2	4600	2.47E+12	1.88E+10
		Total	3.21E+12	2.49E+10

^{*} Bacterial samples not collected at 001 during study. Since source water for 995 & 001 are same, values for 995 were assigned to 001.